Мартенситные стали представляют собой хромистые сплавы, структура которых состоит в основном из мартенсита. В них содержится обычно не менее 0,15 процентов углерода, от 11 до 17 процентов хрома, а также незначительное количество таких элементов, как никель, вольфрам, ванадий и молибден.
Под мартенситом понимают игольчатую микроструктуру, которая фиксируется в отдельных чистых металлах, имеющих склонность к полиморфизму, и металлических сплавах, прошедших процедуру закалки. По сути, мартенсит – это базовый структурный компонент стали после закалки, который является твердым пересыщенным упорядоченным раствором углерода в α-железе.
Впервые он был описан Марком Мартенсом – известным специалистом в области проблем, связанных с усталостью различных металлических материалов. Именно в его честь и был назван мартенсит.
Кристаллическая решетка интересующего нас углеродного раствора в α-железе является тетрагональной. Каждая из ее элементарных составляющих описывается формой параллелепипеда (прямоугольного). В центре и вершинах ячейки при этом размещаются атомы железа, а в объемах ячеек расположены атомы углерода. Высокие прочностные показатели и твердость, коими описывается любая мартенситная нержавеющая сталь, обуславливаются неравновесной структурой мартенсита, характеризуемой существенными внутренними напряжениями.
При нагреве мартенситного металла отмечается перераспределение (диффузионное) атомов углерода, что приводит к формированию двух фаз:
Элементарная ячейка первой из означенных фаз описывается ромбической структурой, вторая – объемно-центрированной. Решетка начальной структуры аустенита связана кристаллографическими постоянными соотношениями с решеткой мартенсита. Это означает, что плоскости с четко заданными кристаллографическими индексами аустенитной и мартенситной структуры параллельны друг другу.
Принято выделять два типа мартенсита:
Такой полиморфный процесс предполагает то, что упорядоченное передвижение молекул либо атомов в составе кристалла вызывает модификацию их расположения по отношению друг к другу. Причем междуатомные расстояния в данном случае существенно больше, нежели показатели смещений относительного плана соседних атомов.
Деформации ячеек кристаллической решетки – это и есть ее перестройка, за счет чего окончание мартенситного преобразования вполне допускается описывать как однородно измененную начальную фазу. Отметим отдельно и то, что деформация имеет малую величину (не более 10 %). По этой причине энергетический барьер, который не дает развиваться однородному переходу начальной фазы в конечную, также невелик, если соотносить его с энергией связи в кристалле.
Описываемое нами превращение становится возможным только в том случае, когда постоянно присутствует упорядоченное взаимодействие между метастабильной и стабильной фазой. Повышенная подвижность и низкий энергетический потенциал межфазных границ обусловлены их упорядоченным строением.
Следствием этого становится то, что требуемая для появления кристаллов в новой фазе "лишняя" энергия, имеет малое значение. Ее вполне можно сопоставить с энергией "исходных" дефектов, имеющихся в начальной фазе. За счет такой особенности скорость образования мартенситных кристаллов является по-настоящему большой, причем, как правило, тепловых изменений для зарождения новых кристаллов не требуется.
Мартенситные преобразования в комбинации с модификациями атомного порядка компонентов и их перераспределения являются базой для разнообразных структурных превращений, которые дают возможность изменять характеристики кристаллических материалов посредством их механической либо термической обработки.
Такие хромистые стали имеют в своем составе достаточно высокое содержание углерода. Кроме того, зачастую они легируются молибденом, ниобием, вольфрамом и иными компонентами, которые обеспечивают высокие жаропрочные показатели конечного металла.
Особенности сталей, относимых к мартенситному классу:
Популярные марки мартенситных стальных сплавов:
Используются описываемые стали для производства:
Технология сварки сталей описываемого класса достаточно сложна, что вызвано склонностью таких металлов после процедуры закалки к хрупкому разрушению. Их следует сваривать после предварительного нагрева до 200–450 °С, причем температура окружающего воздуха должна быть плюсовой. Как правило, металлы мартенситной группы свариваются методом ручной дуговой сварки с применением электродов, покрытых спецсоставами. Реже используются другие виды сварки:
Добавить комментарий