Углеродистая сталь востребована разнообразными предприятиями, из нее изготавливают детали для машиностроения, несущие конструкции, всевозможные инструменты и другие предметы.
Углеродистые стали (УС) представляют собой металлургические низколегированные композиции, содержащие до 99,5 % железа. В них также вводятся в строго дозированных количествах различные добавки. Последние обуславливают особые эксплуатационные, технологические и механические свойства интересующих нас сплавов. От общего количества сталей, выплавляемых на металлургических предприятиях, на долю углеродистых композиций приходится порядка 80 %. Сейчас известно более двух тысяч марок таких сплавов. По сфере применения все они делятся на конструкционные, инструментальные и стали обыкновенного качества.
Их структура зависит от процентного содержания углерода. Изменяя его количество, можно придать готовой композиции заданные свойства (текучесть, плотность, пластичность, твердость). Если углеродистая сталь содержит менее 0,8 % углерода, ее структура включает в себя перлит и феррит. В сплавах с углеродом более 0,8 % обязательно присутствует цементит (вторичный). А вот низколегированная сталь с содержанием интересующего нас элемента на уровне 0,8 % имеет перлитную структуру. Прочность сплава, его ударная вязкость и порог хладноломкости повышаются при увеличении содержания углерода в нем. Но при этом фиксируется снижение пластичности проката.
Углеродистые стали подразделяют на три типа в зависимости от своего химсостава. Они могут быть низко-, средне- и высокоуглеродистыми. В первых углерод присутствует в малых количествах (до 0,25 %). Такие композиции хорошо деформируются (их плотность сравнительно мала) и в горячем состоянии, и в холодном, обладая высокой степенью пластичности. В среднеуглеродистом прокате углерода имеется 0,3–0,6 %. Эти сплавы характеризуются неплохой текучестью и пластичностью и при этом достаточной прочностью. Чаще всего они используются для строительных и иных конструкций, которые эксплуатируются в обычных условиях.
Всевозможные измерительные приборы и инструменты повышенной прочности делают из высокоуглеродистых (0,6–1,4 %) сплавов. Они имеют повышенную плотность и ряд уникальных характеристик (их обуславливает особая структура выплавляемой стали). Таким образом, область применения углеродистых композиций зависит от их химического состава и непосредственно от назначения конкретной марки стали. Позже поговорим об этом подробнее.
Кроме углерода, в УС всегда имеются включения других химических элементов. К таковым относят кислород, водород, фосфор, марганец, азот, серу, кремний. От количества этих примесей зависит плотность готового проката и другие его механические свойства. Марганец дает возможность выполнять раскисление УС. Поэтому его специально добавляют в любой сплав. Под раскислением понимают важную и полезную операцию – удаление вредных продуктов закиси железа. За счет введения марганца структура металла становится более качественной. Он обеспечивает растворение сернистых веществ в цементите и феррите.
Аналогичную функцию выполняет и кремний. Он отлично раскисляет металлургические композиции. Их структура благодаря этому обретает требуемую упорядоченность. Здесь стоит отметить, что кремний полностью растворяется в феррите. Лишь небольшая его часть иногда остается в виде силикатов в углеродистых сплавах. Низколегированная сталь при этом не теряет своих стандартных характеристик. Негативное воздействие на свойства УС оказывает сера и фосфор. Первая попадает в металл из печных газов и из руды. Сера снижает плотность проката (усредненный ее показатель равняется 7,8 г/куб. см) и делает сплав хрупким. По этой причине ее содержание в УС должно контролироваться и корректироваться. В качественном углеродистом прокате серы не может быть более 0,04 %, в обыкновенном – более 0,03.
Фосфор попадает в сталь из флюсов и железной руды. При большом содержании данного элемента прокат становится хрупким. Это приводит к хладноломкости сплава, что недопустимо. В настоящее время фосфор без проблем удаляется из металлургических углеродистых композиций, применение которых требует минимального содержания этой примеси. Углеродистые и легированные стали в незначительных объемах содержат азот, водород, кислород. Их количество зависит от вида металлургического производства (конвертерный, мартеновский процесс, выплавка в электрических агрегатах). Азота и водорода в прокате может быть от 0,0001 до 0,0007 %, кислорода – от 0,002 до 0,03 %.
Чрезмерное содержание таких примесей становится причиной увеличения предела хладноломкости сплавов. Они могут снижать ударную вязкость стали. Особенно опасен переизбыток водорода. Он может привести к появлению флокенов – надрывов в готовом прокате. При их наличии структура и свойства металла ухудшаются.
Обычная углеродистая сталь изготавливается в виде балок, прутьев, листьев и швеллеров. Ее свойства позволяют применять сплавы обыкновенного качества в машиностроительной отрасли и в строительной сфере в качестве надежных опорных изделий. Маркируются обычные стали буквами Ст и цифрой от 0 до 6. Последние указывают на прочность сплава. Чем большая цифра стоит в маркировке, тем более прочной является сталь. Обозначение УС также включает в себя методику раскисления металлургической композиции. С этой точки зрения сплавы могут быть:
Кроме того, обычные по качеству углеродистые стали делят на подвиды А, Б и В. Сплавы группы А нельзя использовать для производства сварных конструкций. Эти стали не регламентируются по химическому составу. Их основным показателем принято считать механические свойства. Сплавы Б-подвида имеют строго определенный химсостав. При этом их механические свойства могут изменяться. Изделия из сталей группы Б допускается подвергать термической обработке, ковке, штамповке. Самыми дорогими (и, конечно же, качественными) являются сплавы В-подвида. Их химсостав и механические свойства четко соответствуют требованиям Госстандартов. За счет особых характеристик таких сталей их разрешается сваривать без ограничений (по разным технологиям).
Конструкционные УС поставляют в виде разнообразных полуфабрикатов, включая различные варианты поковок и проката. Такие качественные углеродистые стали имеют мало неметаллических примесей и негативно влияющих на свойства стали элементов (серы и фосфора). Поэтому их характеристики (механические и химические) являются строго гарантированными. Обозначаются конструкционные качественные сплавы числами, состоящими из двух цифр – 45, 20, 08, 85 и так далее. Этот код указывает содержание (в сотых частях процента) углерода в готовом прокате. Если перед нами сталь с маркировкой 45, несложно понять, что углерода в ней около 0,45 %. Конструкционные УС идеально подходят для производства широкой номенклатуры машиностроительных изделий. Важно! Начальные свойства таких сплавов (эксплуатационные и прочностные) легко повышаются посредством проведения их термической обработки.
Инструментальные стали находят применение при изготовлении инструмента для обработки древесины, матриц, фрез, пневматического инструмента, плашек, сверлильных приспособлений, кусачек, плоскогубцев и аналогичных инструментов. Также из них делают ножовочные полотна, напильники, измерительные механизмы. Маркируются инструментальные сплавы литерой У, цифрами, указывающими на количество углерода (десятые части процента), а также дополнительной буквой А (ставится в конце обозначения стали, если речь идет о прокате высокого качества). Если перед вами сплав с маркировкой У13А, сразу можно понять, что вы имеете дело с инструментальной высококачественной сталью с углеродом 1,3 %.
При колебаниях температуры от +20 до +900° плотность рассматриваемых сталей практически не изменяется. Эта величина находится в пределах 7,7–7,9 г/куб.см. По сути, плотность УС аналогична показателю плотности железа. Это логично, ведь основу любого углеродистого сплава составляет именно оно. Изменить плотность, а также свойства и структуру УС позволяет их термообработка. Под такой операцией понимают нагрев сплава, а затем его охлаждение.
Термическая обработка углеродистых сталей бывает следующих видов:
Применение отжига металла позволяет получить сплавы со структурой, мало чем отличающейся от равновесной. Такая операция осуществляется по простой схеме: нагрев металла до определенной температуры и его выдержка в течение заданного времени, а затем охлаждение проката (оно происходит, как правило, вместе с печью на протяжении относительно длительного временного отрезка). Закалка углеродистой стали производится аналогичным образом. Но охлаждается нагретый металл в данном случае с заданной (достаточно быстрой) скоростью. Она подбирается металлургами так, чтобы готовый прокат получил полностью мартенситную структуру. При закалке обязательным является применение специальных масел, соляных растворов либо воды. Эти жидкости обеспечивают быстрое охлаждение УС.
Отпуск дает возможность получить прокат с определенными свойствами. Он применяется только для закаленных ранее сплавов. Отпуск обеспечивает снятие напряжений (внутренних) в металле и повышение его механических параметров. Углеродистая сталь, кроме того, может подвергаться нормализации (нагрев, выдержка и остывание естественным путем на открытом воздухе). Такой процесс не относят к основным типам термообработки. Он, скорее, представляет собой подвид стандартной закалки или отжига.
Добавить комментарий