Соединение металлических деталей электрической дугой известно уже более 120 лет, но немногие знают все тонкости этого процесса, что очень важно для того, чтобы сделать расчет сварочного трансформатора для простейшего аппарата и полуавтомата.
Прежде, чем разбираться в формулах, давайте рассмотрим принцип действия простейшего аппарата для дуговой сварки. Основой такого агрегата является понижающий трансформатор, позволяющий изменить входящее напряжение, соответствующее в быту 220 В, на более низкое, до 60 В для так называемого холостого хода или, иначе, состояния покоя. То, какие виды электродов можно будет использовать с устройством, зависит от силы тока, которая должна быть в пределах 120-130 А для наиболее популярного трехмиллиметрового диаметра расходного материала.
И вот здесь как раз требуются расчеты, поскольку, если стержень электрода плавится при определенной силе тока, значит, она будет в той же степени нагревать и сердечник трансформатора, а также проволоку обмотки. Следовательно, для того, чтобы узнать оптимальную мощность трансформатора, нам нужно сначала вычислить рабочее напряжение, ориентируясь на рабочую силу тока. Для этого существует формула U2 = 20 + 0,04I2, где U2 – напряжение на вторичной обмотке, а I2 – выдаваемый аппаратом максимальный сварочный ток.
Теперь вернемся к сердечнику, который не зря так называется, поскольку является сердцем трансформатора, как самого простого, так и полуавтомата. Он составляется из металлических пластин, которые способны выдержать определенную нагрузку по мощности тока. Это допустимое значение зависит от размеров сердечника и называется габаритной мощностью, которую можно найти, зная значение напряжения холостого хода. Последнее высчитывается по формуле Uхх = U2S, где S – площадь сечения провода вторичной обмотки. Зависимость этой площади от диаметра проводника определяем по формуле S = πd2/4, или по следующим таблицам:
1.
Допустимые токовые нагрузки на провода с медными жилами |
||||||
Площадь сечения токопроводящей жилы, мм2 | Диаметр провода,мм | Допустимая сила тока, А | Площадь сечения токопроводящейжилы, мм2 | Диаметр провода, мм | Допустимая сила тока, А | |
0.5 | 0.78 | 11 | 35 | 6,7 | 170 | |
0,75 | 0.98 | 15 | 50 | 8,0 | 215 | |
1,0 | 1,13 | 17 | 70 | 9.5 | 270 | |
1,5 | 1,4 | 23 | 95. | 11.0 | 330 | |
2,5 | 1,8 | 30 | 120 | 12,4 | 385 | |
4,0 | 2,26 | 41 | 150 | 13.8 | 440 | |
6.0 | 2,8 | 50 | 185 | 15,4 | 510 | |
10 | 3,56 | 80 | 240 | 17,5 | 605 | |
16 | 4,5 | 100 | 300 | 19,5 | 695 | |
25 | 5,6 | 140 | 400 | 22,5 | 830 |
2.
Допустимые токовые нагрузки на провода с алюминиевыми жилами |
||||||
Площадь сечения токопроводящей жилы, мм2 | Диаметр провода,мм | Допустимая сила тока, А | Площадь сечения токопроводящейжилы, мм2 | Диаметр провода, мм | Допустимая сила тока, А | |
2 | 1,6 | 21 | 35 | 6,7 | 130 | |
2,5 | 1,78 | 24 | 50 | 8,0 | 165 | |
3 | 1,95 | 27 | 70 | 9.5 | 210 | |
4 | 2,26 | 32 | 95. | 11.0 | 255 | |
5 | 2,52 | 36 | 120 | 12,4 | 295 | |
6 | 2,76 | 39 | 150 | 13.8 | 340 | |
8 | 3,19 | 46 | 185 | 15,4 | 390 | |
10 | 3,56 | 60 | 240 | 17,5 | 465 | |
16 | 4,5 | 75 | 300 | 19,5 | 535 | |
25 | 5,6 | 105 | 400 | 22,5 | 645 |
Итак, у нас есть все необходимые параметры для того, чтобы вычислить габаритную мощность сердечника. Далее работаем по формуле Pгаб = UххI2cos(φ)/η, где φ – угол смещения фаз между напряжением и током (можно принять величину 0.8), а η – КПД (принимаем 0.7). Остается найти допустимую мощность, которую выдержит аппарат при длительной работе. При этом учитываем, что коэффициент продолжительности работы (обозначим его ПР) составляет около 20 % от времени подключения трансформатора к сети.
Поэтому считаем следующим образом: Pдл = U2I2(ПР/100)0.50.001, или, иначе Pдл = U2I2(20/100)0.50.001, что соответствует Pдл = U2I20.00045. В целом продолжительность работы и сила сварочного тока практически не связаны. В большей степени на время дугового режима влияет сечение проволоки обмотки и качество изоляции, а также то, насколько плотно и, главное, ровно, уложены витки. Следовательно, теперь мы можем узнать электродвижущую силу одного витка в вольтах, используя формулу E = Pдл0.095 + 0.55.
Далее, получив результат эмпирической зависимости по последней формуле, высчитываем оптимальное количество витков для обмотки, как первичной, так и вторичной. Для той и другой используем две формулы, соответственно N1 = U1/E, где U1 – входящее напряжение сети, а N2 = U2/E. Сила сварочного тока регулируется увеличением или уменьшением расстояния между первичной и вторичной обмотками: чем оно больше, тем ниже мощность на выходе. Тем, кто делает приведенный расчет с целью самостоятельной сборки трансформатора, а не для приобретения готового сварочного полуавтомата, понадобится еще и вычисление габаритов сердечника.
Площадь сечения металла определяется по формуле S = U210000/(4.44fN2Bm), где f – промышленная частота тока (принимаем за 50 Гц), Bm – индукция магнитного поля (принимаем за 1.5 Тл). Теперь можно узнать ширину стальной пластины в пакете трансформатора: a = (100S /(p1kc))0.5, где за p1 принимаем диапазон значений 1.8-2.2 (рекомендуется среднее), kс – коэффициент заполнения стали (соответствует 0.95-0.97).
Исходя из значения ширины пластины, выясняем толщину пакета пластин плеча, для чего используем формулу b = ap1, а затем и ширину окна магнитопровода c = b/p2, где p2 имеет диапазон значений 1–1.2 (рекомендуется максимальное). К слову, если уж мы взялись измерять габариты, вспомним про коэффициент заполнения стали, который обозначает промежутки между пластинами. С учетом этого показателя площадь сечения сердечника будет несколько иной, поэтому назовем ее измеряемой величиной и определим заново. Формула для этого потребуется следующая: Sиз = S/kc. В большинстве случаев эти расчеты не нужны при наличии онлайн-калькулятора.
По сути, тор – это объемное геометрическое тело, хотя в математике бытует понятие "поверхность". То есть это даже не фигура, а замкнутая поверхность, имеющая одну общую для любой размещенной на ней точки сторону. Но, если не вдаваться в дебри терминологии, тор – это бублик, или окружность, вращающаяся вокруг некой не пересекающей ее оси, с которой располагается в одной плоскости. Именно в форме такого бублика может быть выполнен трансформатор-тороид.
Основная его характеристика – высокий КПД при небольших, в сравнении с другими типами сердечников, размерах. Что и является основополагающим критерием для предпочтения данной формы самодельных трансформаторов. Основное отличие тороидального трансформатора от прочих – прокладка только межобмоточной изоляции наряду с внешней. Межслоевая не делается по той простой причине, что витки провода, проходя сквозь отверстие тора, создают дополнительную толщину внутреннего диаметра, что исключает использование лишних слоев изоляции.
Именно это значительно усложняет сборку тороида, и потому он редко устанавливается в корпусе полуавтомата, где чаще можно увидеть стержневые сердечники. Чтобы не возникали пробивания, применяются провода с повышенной прочностью изоляционного покрова. В качестве прокладки можно взять лавсан или ленту ФУМ (фторопластовую).
Для определения габаритной мощности сердечника, выполненного в виде тора, нам достаточно узнать две площади: окна и сечения.
Первую вычисляем по формуле Sокна = 3.14(d2/4), где d – внутренний диаметр тора. Вторая формула выглядит следующим образом: Sсеч = h((D-d)/2), здесь D – внешний диаметр "бублика". Далее остается только рассчитать габаритную мощность трансформатора, для чего используем простейший способ умножения двух получившихся ранее результатов. Иными словами, Pгаб[Вт] = Sокна[кв.см] * Sсеч[кв.см]. Дальнейшие вычисления ориентируем согласно таблице:
Pгаб | ω1 | ω2 | ∆ (А/мм2) | η |
До 10 | 41/S | 38/S | 4.5 | 0.8 |
10-30 | 36/S | 32/S | 4 | 0.9 |
30-50 | 33.3/S | 29/S | 3.5 | 0.92 |
50-120 | 32/S | 28/S | 3 | 0.95 |
Здесь Pгаб – габаритная мощность трансформатора, ω1 – число витков на вольт (для стали Э310, Э320, Э330), ω2 – число витков на вольт (для стали Э340, Э350, Э360), ∆–допустимая плотность тока в обмотках, ŋ – КПД трансформатора.
Определив количество витков на каждый вольт для сердечника из той или иной стали, можем узнать, сколько витков всего нужно будет выполнить при изготовлении трансформатора. Для этого используются две формулы, для первичной и вторичной обмотки соответственно: N1 = ω1U1 и N2 = ω2U2. Далее следует учесть некоторое падение напряжения, возникающее из-за небольшого сопротивления в обмотках, которое, впрочем, в тороиде довольно незначительное.
Для этого увеличиваем количество витков вторичной обмотки на 3 % (в других типах сердечников понадобилось бы больше): N2_компенс = 1.03N2. Для того чтобы узнать диаметр проволоки, используем формулу для первой обмотки d1 = 1.13(I1/∆)0.5 и для второй: d2 = 1.13(I2/∆)0.5. При этом результаты округляем в большую сторону и выбираем ближайшие доступные провода.
Добавить комментарий